- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Aalizadeh, Majid (2)
-
Azmoudeh_Afshar, Morteza (2)
-
Fan, Xudong (2)
-
Raut, Chinmay (1)
-
Tabartehfarahani, Ali (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a full-spectrum machine learning framework for refractive index sensing using simulated absorption spectra from meta-grating structures composed of titanium or silicon nanorods under TE and TM polarizations. Linear regression was applied to 80 principal components extracted from each spectrum, and model performance was assessed using five-fold cross-validation, simulating real-world biosensing scenarios where unknown patient samples are predicted based on standard calibration data. Titanium-based structures, dominated by broadband intensity changes, yielded the lowest mean squared errors and the highest accuracy improvements—up to an 8128-fold reduction compared to the best single-feature model. In contrast, silicon-based structures, governed by narrow resonances, showed more modest gains due to spectral nonlinearity that limits the effectiveness of global linear models. We also show that even the best single-wavelength predictor is identified through data-driven analysis, not visual selection, highlighting the value of automated feature preselection. These findings demonstrate that spectral shape plays a key role in modeling performance and that full-spectrum linear approaches are especially effective for intensity-modulated index sensors.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Aalizadeh, Majid; Azmoudeh_Afshar, Morteza; Fan, Xudong (, ACS Omega)
An official website of the United States government
